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ABSTRACT

The extent to which the plume from a solar thermal rocket will impinge on the solar

collector is studied by flowfield analysis. Such interaction can adversely affect collector

performance through fouling, heat loading, or pressure loads that deform the delicate

structures. Estimates of these quantities are needed for collector design. The geometrical

shape of the collector is such that only the flow from the nozzle boundary layer can reach it,

but the thrust levels of interest lead to very viscous nozzle flows with large, thick boundary

layers. Reasonable accuracy in solving these flows requires a fully coupled viscous-inviscid

procedure inside the nozzle. Results show that the fraction of the plume that hits the

collector can be well estimated by continuum theory, but that transitional and rarefied

phenomena will have some impact on how it is distributed over the surface. Both the

pressure loading and heat flux increase for the smaller thrust sizes, but even for the lowest

Reynolds number nozzles increased expansion ratio continues to reduce the interaction.

Higher chamber pressure appears to be the most effective way for reducing plume mirror

impingement. A factor of two increase in p0 corresponds to about a factor of five decrease

in these impingement parameters.



INTRODUCTION

The concept of solar thermal propulsion is based upon heating a working fluid by

concentrated solar energy and expanding it through a standard propulsive nozzle to pro-

duce thrust. The complete propulsion system consists of a rocket engine plus a collector

to collect and focus the solar energy (Fig. 1). A primary advantage of solar propulsion

is that the energy supply need not be accelerated with the vehicle, but remains remote

from the spacecraft. The primary challenge of solar thermal propulsion lies in identifying

a method for coupling the solar energy into the thermal (kinetic) modes of the working

fluid. For this purpose, both direct and indirect absorption concepts have been proposed.

Direct absorption requires advanced technology and longer development time. Indirect

absorption requires current technology and can be implemented today, although it does

suffer some performance penalties in comparison with direct absorption schemes.

In the direct absorption concept, solar radiation is absorbed directly into the flowing

gas. Direct absorption of solar energy is difficult because of the low energy densities of

the radiation. Even after concentration, solar intensities remain too low to be absorbed

readily in most gases of interest. The combination of a trace amount of seedant gas such as

alkali metal vapors with a bulk carrier gas such as hydrogen does, however, offer promise

of providing acceptable absorption lengths 1. Analyses of direct absorption in a hydrogen-

alkali mixture are presently being conducted 2.

Indirect absorption schemes are those in which the solar energy is incident upon the

surface of a heat exchanger. The working fluid is then indirectly heated by passing it over

this heated surface. The maximum temperature in such an indirect absorption system is

limited by material considerations and in general the full thermodynamic potential of the

solar energy cannot be realized. $hoji 3 and Etheridge 4 have shown that through the use of

realistic concentrators and high temperature materials, an indirectly heated solar propul-



sion system can provide specific impulses approaching 800 seconds. This performance

level is sumcient to provide a 45% increase in payload 4 as compared with conventional

chemical propulsion system for a one-way LEO to GEO mission. Construction of an in-

directly heated solar thermal demonstration engine based upon these studies is currently

underway s .

The particular aspect of solar propulsion which is addressed in the present paper

has to do with the severity of the interaction between the rocket exhaust plume and the

solar concentrator. Appropriate geometries can be developed 4 which will ensure that

the concentrator will remain outside the direct line of sight of the thrust vector for all

orientations with respect to the sun, but the expansion of the exhaust plume away from

this direct line of sight and the backflow of small fractions of the plume into the upstream

quadrants will lead to plume/mirror impingement. The purpose of the present study is

to assess the pressure and heat transfer loads that will be imposed on the mirror by this

impingement. The analyses will be limited to technologies based upon indirect absorption.

The size of the collector is dictated by the energy requirements of the engine, which,

in turn, are determined by the thrust size and the peak temperature to which the fluid

is heated. The peak temperature is set by thermodynamic and material constraints while

the thrust size is set by mission requirements. The net effect of these size considerations

is a collector that is much larger than the engine. For representative cases, the maximum

diameter of the collector is some 5000 times the nozzle throat diameter. Figure 1 also

shows that for designs of interest, a plume expansion of about 45 ° can be tolerated before

the plume begins to impinge on the mirror surface.

The peak temperature and the molecular weight of the working fluid determine the

specific impulse of the rocket. For the indirect absorption case, the working fluid can

be selected on the basis of its molecular weight. Consequently, the properties of pure

hydrogen are used here. From second law considerations, the maximum temperature must



lie below the effective temperature of the sun's surface, 5760 K. Peak temperatures in the

indirect absorption system are, however, limited by material considerations. The present

contamination estimates are based upon a technology that uses rhenium coils for the heat

transfer surface s corresponding to allowable temperatures of about 2780 K.

In order to estimate the severity of plume-mirror interaction over a range of condi-

tions, a multi-dimenslonal matrix composed of five different nozzle thrust sizes (5, 50, 250,

500 and 2500 N), three different expansion area ratios (100, 200 and 500 to 1), and two

different absorption chamber stagnation pressures was used (3 and 6 arm). Calculations

of plume-mirror interactions were made for each element in the matrix for an 80% bell-

shaped nozzle 6,_ and for the corner elements in the matrix for a 15 ° conical nozzle and

representative results are included here. A chamber stagnation temperature of 2780 K

and a wall temperature of 900 K were used throughout. The nozzle throat radii were de-

termined on the basis of a one-dimensional calculation of the stream thrust for expansion

into a vacuum. The working fluid is hydrogen, and for the conditions assumed is taken

as having constant specific heats. Sutherland's law was used for viscosity, and a constant

Prandtl number was used. Because of the importance of the nozzle wall boundary layer on

the degree of impingement, the contamination effects cannot be scaled geometrically but

must be recomputed for each thrust level.

PHYSICAL DESCRIPTION OF THE FLOWFIELD

Basic Structure of Exhaust Plumes

It is well known that an inviscid supersonic jet exhausting into a vacuum in constrained

by thermodynamics to turn through only a finite angle. At the high supersonic speeds

typical of large area ratio nozzles, this maximum turning angle is small, and even with

flow angularity present at the nozzle exit, an inviscid jet would remain confined to a

narrow angular region in the aft quadrants. This simple description is, however, valid
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only for inviscid flows. Any real exhaust flow will also include a boundary layer on its

outer periphery. The major fraction of this boundary layer will be supersonic, but a small

fraction must be subsonic. The reduced speeds in the supersonic part of the boundary

layer allow larger turning angles that can result in impingement on the collector surfaces.

The subsonic portions of the boundary layer have no obvious maximum turning limitation

but they are accelerated quickly as they exit from the nozzle and will almost certainly be

pushed toward the forward hemisphere by the supersonic portions of the boundary layer.

Boundary Layer Transition and Relaminarization

The dominant effect of the boundary layer flow upon the collector impingement prob-

lem implies that its development and character must be addressed in detail. The first

issue to be discussed is the state of the boundary layer, that is, whether it is laminar or

turbulent. The high Mach numbers, wall cooling and strong accelerations that charac-

terize rocket nozzle boundary layers cause them to have considerably different transition

characteristics than those observed in typical, incompressible, flat plate boundary layer

experiments. The few experimental studies of actual or simulated nozzle boundary layers

that have been conducted suggest that transition characteristics can be quite complex s- 10

In addition to undergoing transition from laminar to turbulent flow, relaminarization from

turbulent to laminar flow can also take place. In a typical high Reynolds number noz-

zle, the initial transition from laminar to turbulent flow occurs in the converging section

upstream of the throat. The strong accelerations downstream of the throat can, and fre-

quently do, cause this turbulent boundary layer to relaminarize once again. In high area

ratio nozzles the length could be sufficient to allow this relaminarized boundary layer to

undergo transition to turbulence a second time. Finally, in small, low Reynolds number

nozzles Such as those of interest for solar propulsion, the boundary layer could remain

laminar all the way from the subsonic region to the exit plane. The experimental data

available are not sufficient to provide a complete documentation of transition and relam-
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inarization in nozzle boundary layers, but a review of what information is available gives

us some guidance as to expected trends.

In experiments conducted in exhaust nozzles, Back and co-workers s'9 found that the

strong acceleration downstream of the throat could suppress turbulence production and

cause the boundary layer to revert back to a laminar-like character. Correlations of their

data showed that relaminarization occurred for nozzle throat Reynolds numbers below

about 2 x 10 e. Measurements of the heat transfer coefficient I° showed that it also decreased

rapidly when the turbulence intensity decreased.

Experimental studies of the effect of acceleration on an incompressible turbulent

boundary layer I° showed that turbulence generations was inhibited when the parameter,

K, defined as,

v dU,
K-

dz

exceeded 3.5 x 10 -°. This parameter is the reciprocal of the Reynolds number based upon

the characteristic distance over which the acceleration takes place.

Additional factors such as wall cooling, which has a dramatic effect on boundary layer

growth in supersonic flows, will most certainly affect transition and relaminarization, but

explicit information on their influences is not available. Perhaps the overriding issue in the

present case is the relatively low Reynolds numbers for these small thrust engines. The

maximum value of the throat Reynolds number never exceeds 150,000 and drops as low

as 5000. Thus, the Reynolds numbers are always as least an order of magnitude below

the range where the boundary layer remains turbulent according the Back's criterion.

Similarly on the basis of Kay's experimental data, relaminarization occurs immediately

after the nozzle throat. Consequently, laminar flows are expected for all cases considered.

Despite these indications, attempts were made (as outlined below) to include turbulence

effects, but the eddy viscosity never exceeded the laminar value by more than a factor
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of fifteen even for the largest nozzles. All implications are that fully turbulent boundary

layers are not encountered.

Non-Continuum Effects

In addition to these continuum effects, plume expansion into a vacuum produces tran-

sitional and non-continuum effects near the periphery of the plume. The details of this

phenomenon have been studied by Bird t2,13'14 using direct simulation Monte Carlo proce-

dures. His analyses show that the non-continuum aspects of an expansion into a vacuum

can be characterized by the density gradients along the streamlines. On the basis of Monte

Carlo solutions for one-dimensional flows, he defined an empirical breakdown criterion for

determining when non-equilibrium effects become significant 12. He later applied this cri-

terion to Prandtl-Meyer expansions is and rocket nozzle flows z4. The criterion quantifies

non-continuum effects as beginning when the non-dimensional parameter, P, defined as,

p=__vq4 p Idesp

exceeds 0.05. Here, q is the magnitude of the flow velocity, _ is the kinematic viscosity, p

is the pressure, and _ is the density gradient along a streamline. Regions of the jet where

P is less than 0.05 are accurately predicted by continuum theory, while regions where P

exceeds 0.05 begin to exhibit non-equilibrium effects.

The location of the P = 0.05 curve for nominal solar rocket plume conditions of

interest here is given in Fig. 2 which summarizes the various regimes in the exhaust

flowfield. This curve lies well inside the rotational flow originating in the boundary layer,

and although most of the mass that eventually hits the collector will have undergone

some non-equilibrium effects, the amount of mass hitting the mirror can be reasonably

well established by continuum theory. Non-equilibrium effects will alter the manner in

which the contamination is distributed along the surface, but will have little effect on the

fraction of the plume that hits the mirror. Accordingly, the present calculations are based
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on continuum approaches.

ESTIMATES OF THE BOUNDARY-LAYER CHARACTER BY

VISCOUS/INVISCID PATCHING

Flowfield modeling within the nozzle must take into account the inviscid supersonic

character of the main flow, but it must also include the viscous effects near the wall

because it is this boundary layer flow that will eventually make its way to the collector.

For an initial estimate of the boundary layer characteristics, we use a patched boundary

layer/inviscid procedure. These initial estimates show that a completely coupled analysis

is necessary, and for our final nozzle flowfield predictions we use the parabolized Navier-

Stokes equations.

The patching procedure used for the initial boundary layer estimates was based upon

a combination of an inviscid Method of Characteristics (MOC) procedure is, and a differ-

ential boundary layer procedure 16 incorporating a two-layer eddy viscosity model 17. The

inviscid core flow calculations were started from a supersonic starting line taken from an

approximate analysis of the transonic flow in the throat region. The pressure distribution

obtained from the MOC procedure was then input to the boundary layer analysis to obtain

the boundary layer characteristics and displacement thickness.

The characteristics of the boundary layer as determined by the patching procedure

are tabulated in Table 1 for five nozzle sizes corresponding to the five thrust levels. To give

an indication of the sensitivity to wall temperature, results are shown for four different

wall temperatures, 550, 1100, 1650, and 2200 K. Table 1 gives the ratios of the boundary

layer thickness, 6", at the exit to the nozzle radius at the exit plane, Re, along with the

momentum thickness Reynolds number at the exit, Ree. The columns at the far right give

the nozzle exit radius in millimeters and indicates whether the calculations are for laminar

or turbulent flow. The calculations for the 50 N nozzle were performed for both laminar
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and turbulent conditions.

The most striking feature of the Table is the very viscous nature of the flow. The

boundary layer thickness, 6, generally reaches halfway to the axis. The displacement

thicknesses range for 10 to 50_, and the Re0's range from below 100 to only 700 for the

largest nozzle. Increased wall cooling reduces both the displacement thickness and the

boundary layer thickness, but even at the lowest wall temperature (which is colder than

expected wall operating temperatures), the boundary layers remain very thick.

Although these calculations are useful for determining the general characteristics of

the nozzle flows, it is clear that the patching between the inviscid and the boundary layer

solutions is only satisfactory for the largest nozzle sizes and the coldest wall temperatures

and it may be questionable there. A fully coupled procedure that includes the viscous and

inviscid effects simultaneously is required.

COMPUTATION OF THE NOZZLE AND PLUME FLOWFIELDS

Parabolized Navier-Stokes Formulation

To solve the boundary layer and inviscid flows in coupled fashion, a parabolized

scheme is has been selected. The PNS equations are obtained from the compressible

Navier-Stokes equations by neglecting streamwise diffusion and making an appropriate

simplification in the convective terms. If the complete inviscid terms are retained, the

pressure gradient in the streamwise momentum equation will allow information to be prop-

agated upstream when the flow is subsonic and space-marching will not be well-posed. This

ill-posedness can be removed by including only a fraction of the pressure gradient in the

streamwise momentum equation 19. Forward marching is allowed if this fraction, w, satisfies

the inequality,

w ,= "_M2 (1)
-- l+('r-l)M 2
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where -_ is the specific heat ration and M is the streamwise Mach number. The remainder,

1 - cv, of the pressure gradient can be evaluated explicitly using backward differences, but

is frequently omitted.

After transforming to generalized body-oriented coordinates and dropping diffusive

terms in the streamwise direction, the PNS equations become,

aQ 0E 0F 0V 0P

+ _ + a. - a. + H- a--_- (2)

The vectors Q, E, and F are_

Q = -_(p, pu, pv, e) T (3)

r pUu + _P_z

o E,= j | pUv+ _p_,
_, (e+p)U

The viscous flux vector, V, is given by,

r pvu + p_z (4)
F = _ pV--v+ p__,

(e+ p)V

0

tl_ +t3_

r t 8v + t3 8u

487 p

+(tl -t4) o-'__ + (t_ -t41_- _''

where the terms t l through t4 are given by,

(5)

t l = I_ -_rlz +17

1

t 3 = -_ It rl z rl r

k'7
(6)

i0



Finally,the source term, H, and the remaining part of the inviscidflux vector, P, are:

i ( o )I

2 o_e2_
1 -_ *'/xOv

8u Y.__.r__

$ *Tz_,,,#uv

(o)r p(x

P = _ (i- _) p_,
0

(7)

(8)

In these expressions, ff and V are the contravariant velocities, while u and v are

the velocities in the axial and radial (x and r) directions, respectively. The coordinate

transformation is defined as,

(9)

and J is the Jacobian of the coordinate transformation. For the nozzle problem, the

transformation given in Eqn. 9 was defined algebraically. In generalized coordinates, the

streamwise Mach number used in the definition of w in Eqn. 1 becomes,

m

U
M = (10)

c_/_ + {_

where c is the speed of sound.

Computational Results from the PNS Equations

The numerical solution of Eqn. 2 is generally obtained by dropping the time derivative

and marching in x using a non-iterative implicit algorithm 19'2°. The equations can also be

solved by marching in time using an appropriate upwind difference for the _ direction. The

present results were computed with such a time-marching scheme that was obtained by
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modifying an existing Navier-Stokescode. The time-marching procedure required several

iterations at each x step, but allowed the gradient of the flux vector, F, to be differenced

in fully conservative form. This improved accuracy means variable x-steps can be used

in the time marching procedure without introducing conservation errors, hence, partially

offsetting the slowdown due to iteration. In addition, the value of w was given in Eqn. 1

can be used without a safety factor is.

Nozzle flowfield solutions for three thrust levels are given in Fig. 3 for the 500:1

nozzle. These results were obtained with the PNS procedure on a 135 x 50 grid. Figure 3a

shows the Mach number contours in the 2500 N bell nozzle, while Figs. 3b and 3c show

corresponding contours for the 50 and 5 N bell nozzles. As the nozzle size is reduced, the

boundary layer thickness increases steadily.

An additional comparison the three of these cases is shown on Fig. 4 which shows

the velocity profile at the nozzle exit plane for the 5, 50, and 2500 N bell-shaped nozzles.

This figure again shows the increase in viscous effects as the nozzle size is decreased. The

differences between the exit profiles in the conical and bell-shaped nozzles for the 2500 N

case are also compared here. The different nozzle geometries have a considerable effect on

the exit profile. Finally, Fig. 4 shows the exit profile computed with the MOC-boundary

layer analysis for the 5 N bell-shaped nozzle for comparison with similar results from

the PNS solutions. This profile is for two iterations between the MOC and boundary

layer solutions. Further iterations should be included, but this comparison shows the

general trend observed, namely that the patched solutions overestimates the thickness of

the boundary layer.

Computations of the Exhaust Plume

After the flow inside the nozzle has been computed, the results can be used as the start

line for the plume calculation. Following Ref. 15, the plume is divided into two regions,

a nearfield region that is treated by the Method of Characteristics, and a faxfield region
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where a simple expansionflow is assumed.The start line for the plume MOC calculation

must include both the inviscid and the boundary layer profile. After the flow leavesthe

nozzle,the viscouseffectsin the boundary layer may be ignored, but the rotationality that

has been introduced into the flow by the viscosity has a distinct effect on the plume and

its effectsmust be included.

The MOC procedureis considersan inviscid, perfect gaswith variable specific heats

and includes capability for rotational flow and axisymmetric geometries.

The subsonicportion of the boundary layer cannot be handled by an MOC method

and accurate solution of this region requiresa full Navier-Stokesprocedureif a continuum

assumption is used. Because a Navier-Stokes procedure would necessitate a major increase

in computer resources, the simple ad hoc procedure suggested in Ref. 15 was used. In this

procedure, the subsonic part of the boundary layer was accelerated to supersonic speeds

and treated as an inviscid rotational flow in the MOC procedure.

Far from the nozzle exit, the flowfield becomes a pure isentropic expansion along

each streamline and calculations using MOC become unnecessary. A simple source flow

expansion is used to calculate the flow in this farfield region. The switch from MOC to

source flow expansion is typically made some 200 nozzle throat radii from the exit plane.

Plume Flowfield Results

A characteristics net as obtained from the MOC solution procedure is shown in Fig.

5 for representative near-field plume conditions. The outer boundaries of the near-field

calculation are nominally taken as 50 throat radii from the centerline in the radial direction

and 100 throat radii in the axial direction. Characteristic nets like the ones shown in Fig.

5 were obtained for all cases in the test matrix and were used to generate the contour plots

discussed below.

Near-field Mach number contour plots for the three cases shown earlier are presented in

Fig. 6. These plots show constant Mach number contours for the nearfield plume starting
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from the nozzle exit plane and extending to a region where all streamline curvature is

gone and the streamlines are completely straight. In general, each constant Mach number

contour extends far downstream in regions near the axis, but the contours first return

closer to the nozzle at larger angles away from the axis before again extending radially

outward in the rotational flow region to form the lobe mentioned earlier. On the outer

edge of the plume the Mach number contours all return to the nozzle lip at a common

location. These regions of near approach correspond to local regions of high acceleration.

The one on the plume edge occurs because of the local expansion. The strong acceleration

region at about 30 ° and the lobe of slower acceleration at about 45 ° are induced by the

total pressure gradient in the boundary layer. It is this lobe with which we are particularly

interested in the present analysis because it is this portion of the plume that eventually

impinges on the collector.

Comparison of the contour plots for the three thrust levels indicates there is a reduced

degree of expansion in the smaller nozzles. The plot for the larger nozzle contains Mach

number contours up to M = 15 whereas the plot for the smallest nozzle only expands up

to M = 12 in this same region. The reason is because of the thicker boundary layer in

the 5 N nozzle. Also, the low acceleration lobe caused by the boundary layer is observed

to increase in size as the thrust level is reduced until at the smallest nozzle size, this lobe

nearly dominates the entire flowfield. Similar qualitative comparisons remain true for the

other cases in the computational matrix.

These nearfield plume calculations have been extended to farfield locations by the

geometrically based method suggested in Ref. 15. A representative pressure contour plot

in the farfield is give on Fig. 7. This figure emphasizes the rapid fall-off in pressure in the

vicinity of the "shadow" of the nozzle wall.

PLUME IMPINGEMENT CALCULATIONS
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The mirror geometry used for the present calculations is shown in non-dimensional

form in Fig. 8 for the 3 arm case. Here, the mirror size is normalized by the nozzle throat

radius indicating that the physical size of the mirror scales linearly with the geometric

size of the nozzle. When the level of pressure in the chamber is changed, however, the

nozzle throat size changes accordingly. Thus, although the physical size of the collector

for a given thrust size is independent of the chamber pressure, its non-dimensional size

is different because r* changes. For this reason, non-dimensional mirror size for a 6 arm

chamber pressure is _/2 times larger than the one shown in Fig. 8.

The pressure loadings and heat transfer on the front surface of the collector were

determined by interpolating farfield solutions like the one on Fig. 7 and are presented in

Figs. 9 through 12. The results are presented as plots of the pressure and heat transfer on

the front surface of the collector as a function of the arc-length distance along the surface.

The arc-length distance is measured from the front, innermost point on the collector.

Figure 9 gives the pressure distribution on the collector for the bell-shaped nozzle for

the 3 arm case for pressure area ratios of 100:1 and 500:1. Results are shown for three

thrust levels. The results show that the pressure loading on the collector increases as

the thrust level is reduced. This is the result of the thicker boundary layer in the lower

thrust nozzles. The comparison also shows that higher expansion ratio nozzles also 1.ead

to decreased pressure loading on the collector. Even at these low Reynolds numbers, the

additional expansion appears to be useful. These pressure loadings, which are in general

very low, represent one limitation on the maximum inflation pressures that can be used in

the balloon-type mirrors that are presently envisioned 3,4.

Corresponding heat flux results for this 3 arm case are presented in Fig. 10. Similar

effects of nozzle Reynolds number and area ratio are seen for the heat flux as were noted

for the pressure. The heat flux rates indicated here represent conditions the very thin

mirror materials must be able to withstand during solar thruster operation.
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Results for a chamber pressure of 6 atm are shown on Figs. 11 and 12. Figure 11

shows the pressure loading while Fig. 12 shows the heat transfer. The effect of Reynolds

number is about the same as for the 3 atm case. Comparison between Figs. 9 and 11 shows

the pressure loading on the mirror is reduced by a factor of five when the 6 atm chamber

pressure is chosen. The reason for this is primarily because of size scaling. Because the

thrust levels (and the energy requirements) of the two different chamber pressure nozzles

are the same, the collectors are both the same physical size in dimensional coordinates.

In non-dimensional coordinates, the collector for the 6 atm nozzle is larger than the one

for the 3 atm case. To a first approximation, the pressure fields decay at the same rate in

non-dimensional coordinates in the two flowfields, although the pressure level is a factor

of two higher for the 6 atm nozzle. The only difference in non-dimensional decay rates

is because of the difference in boundary layer characteristics of the two nozzles (which is

small). Because the collector is placed in the fringe of the plume where the pressure is

falling off very steeply, the high pressure nozzle has considerably smaller pressure Ioadings.

Comparisons of the heat flux rates for the two nozzles (Figs. 11 and 13) show analogous

conclusions.

SUMMARY AND CONCLUSIONS

Solar thermal propulsion promises attractive thrust and specific impulse performance

for spacecraft operations. One of the technology problems that must be addressed in

realizing this performance is the extent to which the exhaust plume interferes with the

collector. Proper design can ensure the collector always remains out of the line of sight of

the thrust vector, but radial expansion of the plume can still reach the collector surfaces.

Only the slower-moving fluid from the nozzle boundary layer can turn far enough to reach

the collector. The pressure and heat transfer loads on the surfaces of the solar collectors of a

potential solar thermal rocket engine have been estimated on the basis of numerical flowfield
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calculations. The results represent important design considerations for the balloon-type

collectors that are envisioned. The pressure loads are a necessary input when selecting

the inflation pressures to be used inside the balloon. These pressures along with the heat

fluxes are needed for selecting the type and thickness of the material to be used for the

collector.

Previous design studies 3'4 have shown that the collector surfaces can be placed in

locations where the irrotational core flow gases will not hit them directly, but additional

plume expansion because of viscous and transitional effects can lead to plume impingement.

The present results show that because of the low Raynolds number conditions, the fraction

of the plume that hits the collector can be well estimated by continuum methods, although

the manner in which the mass is distributed over the surface of the collector may be

affected by non-continuum effects. Specifically, only the slower-moving fluid from the

nozzle boundary layer can turn far enough to reach the collector. This implies that the

boundary layer growth inside the nozzle is of particular interest.

Estimates of the nozzle boundary layer growth show that the small sizes of interest in

solar propulsion cause the boundary layer to occupy as muct as 50% of the nozzle radius

(75% of the area) at the exit plane. The computation of these viscous flows requires a fully

coupled viscous/inviscid procedure. To obtain this coupling we have chosen a parabolized

Navier-Stokes formulation. The complete viscous/inviscid profile at the nozzle exit serves

as the start line for a rotational Method of Characteristics calculation of the plume. The

boundary layer-induced vorticity has a significant effect on the spread rate of the outer

edge of the jet and on concentrator impingement. The farfield flow region is handled by

an isentropic expansion procedure.

Results of the calculations show that around one to four percent of the jet impinges

on the mirrors, but the location and distance are such that the level remains quite benign.

Calculations of both the pressure and heat flux show layer interactions for small thrust
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sizeswhere the boundary layers are thicker and the viscous effects are more important.

Despite these viscous conditions, the plume mirror interactions are always decreased

by extending the nozzles to large expansion ratios. The increased expansion more than

offsets the increased boundary layer growth. Finally, the level of interaction is shown

to decrease quite rapidly with an increase in the chamber pressure. Control of chamber

pressure thus appears to be the best way to control the interaction phenomena.
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TABLE 1

BOUNDARY LAYER CHARACTERISTICS FOR

VARIOUS THRUST SIZES

80% Bell-Shaped Nozzle; Area Ration, 100 = 1

T ° -- 2780K, po _- 3 atm

Para- T_I °K) R*

Thrust(N) meter 550 1100 1650 2200 .(mm)

6�Re .41 .47 .51 .56

5 6*�Re .20 .28 .34 .41 1.5

R,0 46 41 37 33

6/R, .24 .28 .31 .34

50 6*/R, .12 .17 .21 .25 4.8

R_0 81 73 65 58

6/R, .40 .48 .57 .65

50 6*/R_ .17 .27 .38 .47 4.8

R,0 130 138 138 133

6/R_ .33 .41 .49 .57

250 _*/R_ .14 .23 .32 .42 15.3

Re8 231 254 263 259

6/R_ .30 .39 .47 .55

500 ,i*/R, .13 .21 .31 .40 34.3

R_0 299 334 350 349

6/R_ .26 .32 .43 .51

2500 6*/R_ .11 .19 .28 .37 48.4

R,0 599 650 703 717

BL

State

L

L

T

T

T

T

2O



SOLAR

CONCENTRATOR

MIRROR ,/_ ,/

SURFACE_// / SOLARROCKET_TORX

-TRA_PARENF _ " _ ( _

..,,' / \/ ', _i

/" _, (_GNIFIED VIEW)

_ SUN LIGHT

FIGURE 1. - CONFIGURATION _ A SOLAR ROCKET.

LINE OF

SIGHT TO

END OF

P = 0.05 MIRROR ,
I

/LAST RM /

NONEQUILIBRIUM / /"

/
/ /

/ EQUILIBRIUM /

(ROTATIONAL / , /"

(CAVITATION _ INVISCID FLOW) / -"

REGION) _ / /"/*_.,

FIGURE 2. - SUMMARY OF DIFFERENT FLOW REGIONS WITH DIFFERENT

CHARACTERISTICS.

234 5 G 7 8 9

(a) 2500 N.

10x103F

(b) .50 N.

6

23 ,, s _ 7 8 9 o_' 1 I [ I I
0.0 0.2 0.3 o.h 0.5 0.6

(c) 5 N, T/R

FIGURE 3. - RACH N_R CONTOURS FOR VARIOUS IIIRUSTSIZES FOR FIGURE q. - VELOCITY PROFILES AT NOZZLE EXIT PLANE.

BILL-SHAPED NOZZLE. AREA RATIO 500:I_ PO = 6 ATM" TO = 2780 K_

Tw = 90OK.

21
ORIGINAL PAGE IS

OF POOR QUALITY



50.0

_7.5

25.0

12.5

o.o _____L_ .... L__
0.0 12.5 25,0

CIIARACTERISTICNET

J ....... L____I I l I
37.5 50.0 62,5 75.0 87.5 I00,0

2/R"

FIGURE 5. - CIIARACIFRISIIC NET 01- lllE NEAR-FIILI) PIJ_ FOR TIIE BEIL-SIIAP[-I) NO/Ill. AREA

RATIO 100:1; Po _ 3 ATM: To = 2780 K: TIIRUST LEVEL : 2500 N.

1000
I J 1 //

I

75.oI--- II{{//_/_I__ 13141a/ 75.o UItt!l///'a'-_7) 19I lo,_//_., /

m _ Y.c_"_-----_,F...2'"
250p 1---12... 250

/ I 1 I I" I I I I I I I "1°I.--- ,1 I 1 I I
0 25.0 50,0 75.0 100.0 125.0 150,0 175.0 200.0 0 25.0 50.0 75.0 100.0 125,0 150.0 175.0 200.0

Z/R," Z/R"

(a) 2500 N. (b) 50 N.

100.0

75.0

50,0

25,0

- ,161,_.//

-
I I

50.0 75.0 I00.0 125.0 150.0 175,0 200.0

Z/R"

(c) 5 N,

FIGURE 6, - MACH NUMBE CONTOURS OF NEARFIELD PLUME FOR

BELL-SHAPED NOZZLE. AREA RATIO 500:I; Po = 6 ATMI

TO = 2780 K; Tw = 900 K.

m

I
0 25.0

ORIGINAL PAGE IS
OF POOR QUALITY

22



14X103

_ CALCULATIONDOMAIN

12

10

8

6

4

2 _: SOLARV'_'-'--_--.-_-1x1° "
ROCKET--.V_IxIo-IO

o ""_ I l I
-h 0 q 8 12x102

X/R •

FIGURE 7. - PRESSURECONTOURSOF FARFIELD PLUME FOR

2500 N ELL-SHAPED NOZZLE. AREA RATIO 100:1; Po =

G ATM- T O = 2780 K; TW = 900 K, R" = 48.{Iram.

(I068R , 3367R )

NIRRO

/ / SURFACE / -_BOUNOARY OF REFLECTED

// / SOLAR RADIATION

(WORKING /

", SURFACE) i

(-1068R °, 897R ) ",

qO0 _, / 72.50
,l.............. i..... _ ____L..................

(0,o)

SOLAR ROCKET EXIT PLANE

FIGURE 8. CONFIGURATION OF SOLAR CONCENTRATOR (% = 50 PSlA, T O =

5OO0 R).

txtO -11

PO = 3 ATM

THRUST

LEVEL

250 100:1

i ,x,o-,,I- If.:
= I /!," ,.;..-2,oo

/

lxlO -1LI

1 I I
0 10 20 30 40 50x 102

COORDINATE ALONG THE SOLAR CONCENTRATOR SURFACE (R')

FIGURE 9. - PRESSURE DISTRIBUTION ON THE SOLAR CON-

CENTRATOR FOR 100:1 AND 500:1 EXPANSION RATIO NOZZLE

AT THREE THRUST SIZES FOR THE BELL-SHAPED NOZZLE,

PO = _ ATM, TO = 2780 K,

SO0:I _ IxlO -11
E

,,=,

_ lx10 -12

lx10-10

lxlO-15

THRUST

LEVEL

(N)

Po = 3 ATM ,./--

-- _ .'_, _- 250 100:1

//, "-.'_.- 2500

Ii , ', S

/ ,._"- 250 500:1

///
qll I J _ _ l

10 20 )0

COORDINATE ALONG THE SOLAR CONCENTRATOR SURFACE (R')

FIGURE I0. - HEAT TRANSFER RAES ON SOLAR CONCENTRATOR

SURFACE FOR I00:I AND 500:1 EXPANSION RATIO ELL-

SHAPED NOZZLES AT THRE THRUST SIZES, PO = ) ATM,

TO = 2780 K,

40 50xlO 2

ORIGINAL PAGE IS
OF POOR (_JALITY

23



E

or}

lx10-12

lx10-13

lx10 -14

lxlO °15

THRUST

LEVEL

(LBF)

,--5
/

_ 250
P = 6 ATM / /

° f- ,;U-25oo

ID'A; "-- 2soo /

lOO: 1

500:I

I I I I I
0 I0 20 30 hO 50xlO2

COORDINATE ALONG THE SOLAR CONCENTRATOR SURFACE (R°)

FIGURE 11. - PRESSURE DISTRIBUTION ON SOLAR CONCEN-

TRATOR SURFACE FOR 100:1 AND S00:I EXPANSION RATIO

BELL-SHAPED NOZZLES IN THREE THRUST SIZES. Po =
6 ^TM.

E

v

THRUST

LEVEL

(LBF)

Ixl0 -II _ Po = 6 ATM //IF"
10o:1

/ ,"

/ /, /- 2500

tx10-12 F ,' ",. ", "_-
5 /

! ' " "" I 500: I

)I/f/,'
1xlo-131 lift/ I t 1 1 J

0 10 20 30 40 50x 102

COORDINATE ALONG THE SOLAR CONCENTRATOR SURFACE (R°)

FIGURE 12. - HEAT TRANSFER RATE ON SOLAR CONCENTRATOR

SURFACE FOR 100:1 AND 500:1 EXPANSION RATIO BELL-

SHAPED NOZZLES AT THREE THRUST SIZES. Po = 6 ATM.

24

ORIGINAL PAGE IS
OF POOR QUALITY



Nafional Aeronautics and Report Documentation Page
Space Administration

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA CR- 185300

4. Title and Subtitle

Solar Rocket Plume/Mirror Interactions

7. Author(s) 8.

Sheng-Tao Yu, Chau-Lyan Chang, and Charles L. Merkle

10.

9. Performing Organization Name and Address

Sverdrup Technology, Inc. 11.

Lewis Research Center Group

2001 Aerospace Parkway
Brook Park, Ohio 44142 13.

Sponsoring Agency Name and Address

National Aeronautics and Space Administration 14.
Lewis Research Center

Cleveland, Ohio 44135-3191

12.

5. Report Date

November 1990

6. Performing Organization Code

Performing Organization Report No.

None (E-5774)

Work Unit No.

505-62-21

Contract or Grant No.

NAS3-25266

Type of Report and Period Covered

Contractor Report
Final

Sponsoring Agency Code

15. Supplementary Notes

Project Manager, Robert M. Stubbs, Internal Fluid Mechanics Division, NASA Lewis Research Center. Sheng-Tao

Yu, Sverdrup Technology, Inc. Lewis Research Center Group. Chau-Lyan Chang, High Technology Co., Hampton,

Virginia 23666. Charles L. Merkle, The Pennsylvania State University, Dept. of Mechanical Engineering,

University Park, Pennsylvania 16802. This work was sponsored by the Air Force Astronautics Laboratory
under Prime Contract No. F04611-84-C-0028.

16. Abstract

The extent to which the plume from a solar thermal rocket will impinge on the solar collector is studied by

flowfield analysis. Such interaction can adversely affect collector performance through fouling, heat loading, or

pressure loads that deform the delicate structures. Estimates of these quantities are needed for collector design.

The geometrical shape of the collector is such that only the flow from the nozzle boundary layer can reach it, but

the thrust levels of interest lead to very viscous nozzle flows with large, thick boundary layers. Reasonable
accuracy in solving flows requires a fully coupled viscous-inviscid procedure inside the nozzle. Results show that

the fraction of the plume that hits the collector can be well estimated by continuum theory, but that transitional

and rarefied phenomena will have some impact on how it is distributed over the surface. Both the pressure
loading and heat flux increase for the smaller thrust sizes, but even for the lowest Reynolds number nozzles

increased expansion ratio continues to reduce the interaction. Higher chamber pressure appears to be the most

effective way for reducing plume mirror impingement. A factor of two increase in pO corresponds to about a

factor of five decrease in these impingement parameters.

17. Key Words (Suggested by Author(s))

Solar rocket

Plume

PNS

18. Distribution Statement

Unclassified - Unlimited

Subject Category 02

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price"

Unclassified Unclassified 26 A03
I

NASAFORM162eoc'rO8 *For sale by the National Technical Information Service, Springfield, Virginia 22161

 LJ ...IIqEItfl0#ALLY PRECEDING pAGE BLANK NOT FILMED




